Classification
Articles
多次脈沖電纜故障測距的方法有哪幾種?
電纜故障從形式上可分為串聯與并聯故障,但實際上故障組合形式是很多的,幾種可能性較大的故障形式是一相對地、兩相對地和一相斷線并接地。電力電纜故障性質作如下分類,如表1所示。
以上分類的目的也是為了選擇測試方法的方便,根據目前流行的故障測距技術,開路與低阻故障可用低壓脈沖反射法,高阻故障要用沖擊閃絡法,而閃絡性故障可用直流閃絡法測試。據統計,電纜在運行中出現的故障,故障點過渡電阻都不高,一般只有幾十歐,只有少許出現上千歐的情況,而在電纜定期檢測時則多出現高阻故障和閃絡故障。
實際上還存在一種封閉性故障,它多發生于電纜接頭或終端頭內,特別是多發生在浸油的電纜頭內。發生這類故障時,有時在某一試驗電壓下絕緣擊穿,待絕緣恢復,擊穿現象便*消失,這類故障稱為封閉性故障,因故障不能再現,尋找起來就比較困難。
電力電纜故障測距方法
電力電纜故障測距按照測距方式可以分為兩類,在線測距和離線測距,由于在線測距存在許多不確定因素,目前尚無法應用到實際中,離線測距成為了電力電纜故障測距的主要方法。其中以阻抗法和行波法為主,阻抗法中的電橋法又分為直流電阻電橋法和電容電橋法。行波法分為低壓脈沖發射法,脈沖電壓法,脈沖電流法,二次脈沖法等。DFDL-T二次脈沖電纜故障測試儀是采用二次脈沖法原理研制的電纜故障測試儀。依據數據來源角度的不同,它們又都包括單端法和雙端法。隨著技術的發展,出現了越來越多的測距方法,比如專家系統、基于GPS的雙端測距、引入小波的行波測距等。
1、阻抗法
阻抗法的原理基于輸電線路為均勻線的假設,以線路集中參數模型為基礎,故障時,測量裝置由啟動元件啟動,測得故障時線路單端或多端電壓、電流值,列解故障測距方程,進而計算出故障回路的阻抗,由于線路長度與阻抗成正比,因此可以求出裝置安裝處到故障點的距離,從而實現故障定點測試。電力電纜故障測距由于實時性要求不是很高,目前采用的大部分為離線測量。較經典的阻抗法是直流電橋法以及近年來研究得較多的利用電纜故障時工頻(相量)電壓電流關系來推導出故障定位方程的方法。
2、行波測距法
行波測距法,即利用測量行波的傳播時間以確定故障位置。根據是否離線的需要,行波法可分為離線和在線測距法。根據行波的種類和測量方式的不同,基于行波法的測距方法分為A、B、C型,以及利用重合閘產生的暫態行波在測量點與故障的之間傳播時間和由測量點感受到的故障開斷初始行波浪涌與其在故障點反射波之間的時延實現單端輸電線路故障測距的新方法。離線行波法又可分為脈沖和閃絡法。采用脈沖法的電纜故障測試設備有DFDL-T多次脈沖電纜故障測試儀及DFDL-H 二次脈沖電纜故障測試儀。DFDL-H二次脈沖電纜故障測試儀是鼎升電力根據市場的需求和電力電纜類的試驗規范而研發生產的二次脈沖電纜故障測試儀,該二次脈沖電纜故障測試儀采用先進的"二次脈沖法 "技術原理以及高頻高壓數據信號處理電路。
電力電纜故障探測主要經過故障診斷、故障燒穿、故障測距、電纜敷設路徑探測和電纜故障定點幾個步驟。其中,電力電纜故障測距具有無比重要的地位,近20年來,國內外許多學者對其作了大量的研究工作,并提出了許多實用的方法。但由于電力電纜故障的復雜性和差異性,需對電力電纜故障測距方法進行研究總結。文章首先對電力電纜故障進行了分類總結,以便針對不同類型的電力電纜故障而選擇應用正確的電纜故障測距方法,然后對常用的幾種電力電纜故障測距方法進行了簡單分析,為電纜故障測距的具體實踐提供借鑒。